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Theoretical predictions of electromechanical deformation of cells subjected to high voltages
for membrane electroporation
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An electromechanical analysis based on thin-shell theory is presented to analyze cell shape changes in
response to external electric fields. This approach can be extended to include osmotic-pressure changes. Our
calculations demonstrate that at large fields, the spherical cell geometry can be significantly modified, and even
ellipsoidal forms would be inappropriate to account for the deformation. Values of the surface forces obtained
from our calculations are in very good agreement with the 1–10 mN/m range for membrane rupture reported
in the literature. The results, in keeping with reports in the literature, demonstrate that the final shape depends
on membrane thickness. This has direct implications for tissues in which significant molecular restructuring
can occur. It is also shown that, at least for the smaller electric fields, both the cellular surface area and volume
change roughly in a quadratic manner with the electric field. Finally, it is shown that the bending moments are
generally quite small and can be neglected for a simpler analysis.
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I. INTRODUCTION

Electroporation is a well-known physical process in b
logical cells@1–3#. It involves rapid structural rearrangeme
of the membrane, in response to an externally applied e
tric field. The field is not an ac excitation, and typically qu
sistatic. The most prominent observable effect is a rapid
crease in the electrical conductivity by several orders
magnitude@4#. This is attributed to the formation of aqueou
pathways, or pores, in the lipid bilayer of the membrane. T
opening of such channels~or more appropriately, transien
aqueous pores! enables the transport of ions and wate
soluble species both into and out of individual cells. Ele
troporation can, therefore, be used to initiate large molec
fluxes for purposes of introducing genetic material into ce
manipulation of cells and tissues, and other applications
biotechnology@5–9#.

Electroporation has also been linked to the nonther
killing of micro-organisms subjected to strong electric fiel
@10#. For this reason, it offers great potential for decontam
nation and the elimination of harmful micro-organisms a
biohazards. Traditionally, most electroporation studies h
focused on relatively low external voltages applied over
tended time periods ranging from several tens of micros
onds to milliseconds@11#. Recently, work has focused on th
use of much shorter pulses~durations well below the micro
second range!, but with electric fields as high as 100 kV/cm
@12–15#. There appear to be several fundamental advanta
in using short electric pulses for cellular manipulation. Fir
negligible thermal heating of the biological matter can
expected to occur due to the short-time duration. Much low
energies are required for pulsed inputs, and yet large va
of the electric fields and peak powers can be obtained@16#.
Also, pulsed fields afford a way by which the time scales c
easily be manipulated.

Given the utility, it becomes important to understand a
accurately analyze the field-assisted electroporation proc
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A necessary first step is the self-consistent electric-field
culation at the cell membrane and its spatial depende
This is important since the field magnitude controls the p
formation rate, the evolution of the pore distribution functio
in ‘‘ r space’’ as governed by the Smoluchowski equat
@17,18#, and ionic flow. However, electric fields are distorte
by the polarizability of the biological medium and influence
by factors such as cellular size and geometric shape.
example, cigar-shaped cells have a greater ‘‘field screen
effect’’ than spherically symmetric cells@19#. As is well
known, biological cells can undergo pronounced change
geometry and size@20–22# when subjected to external elec
tric fields. The shape directly affects the electrical and m
chanical properties of cells~such as capacitance and mem
brane tension, respectively!, and dictates the location a
which electromagnetic boundary conditions have to be
plied. Shape-related changes in the mechanical propertie
known to play an important part in physiology and cell bio
ogy @23#. For example, the membrane elasticity determin
the flow properties of red blood cells, while shape-rela
variations in membrane tension can affect motility, cont
endo- and exocytosis and can even lead to extensive m
bolic changes@24#. It therefore, becomes important to co
rectly account for the geometric changes and cellular de
mations. The push towards high electric fields makes
germane issue even more important.

In general, there are two different mechanisms for volu
and shape changes in cells upon the application of an ex
nal electric field. In one, excessive buildup of the poten
~due to redistribution of the internal cellular charge! causes
membrane perforations. Ionic flows then lead to imbalan
in the osmotic pressure@25# and volume change results
Since this occurs after membrane perforation, a relative t
delay is involved for this process. The studies by Hotani@26#
using dark-field light microscopy on liposomes are typic
examples. The other mechanism is associated with cha
produced by mechanical forces arising from the Maxw
©2002 The American Physical Society13-1
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stress tensor@27#. This process occurs prior to membra
rupture or cellular material flows, and hence, must be ta
into account as an initial condition for electroporative ana
sis. Experimental observations of absorbance dichroism
changes in optical scattering associated with vesicle de
mation of lipids are appropriate recent examples@28#.

The subject of cellular deformation is not new, and h
been studied by several researchers in the past. For exam
Evans applied continuum mechanical deformation theory
the elastic limit for studying the problem of micropipet
aspiration@29#. Their group assumed that the bending mod
lus was negligible in comparison to the shear modulus@30#,
an approximation that was included in subsequent anal
as well @31,32#. However, other treatments of membra
phenomena, such as the formation of tethers@33,34#, spicules
@35#, and undulatory excitations@36# took the opposite view
and emphasized bending stiffness of the membrane. En
methods based on the principle of virtual work have a
been used to predict cellular deformations@22,37–39#. How-
ever, approximations have been made to simplify the an
sis. For example, it has often been assumed that the cel
shapes take on simple forms, such as ellipsoids of revolu
@22,28,40,41#. However, as is well known, a wide variety o
shapes other than ellipsoids are possible@38#. Others have
invoked conditions of either constant surface area or fi
cell volume~incompressibility!, or both, in their calculations
@22,23,29# which strictly are invalid for deformable bodies
Finally, the electric energy in these calculations has of
been based on a simple thin-walled, spherical-cell geome
and typically ignore self-consistent analyses that could
count for the role of geometric changes on the electric fie
and hence, the Maxwell tensor.

In this contribution, the issue of calculating cell deform
tions self consistently due to the electromechanical force
revisited. Use of an energy-based virtual work formalism
difficult for the treatment of dissipative forces and/or f
nonequilibrium situations. So here an approach based
thin-shell theory@42,43# has been used, without applyin
constraints on surface area or cell volume as has typic
been done in the past. Both the shear and bending modu
carefully included in these ‘‘small deformation’’ calculation
The Love-Kirchhoff hypothesis~e.g.,@44#!, which states that
‘‘normals’’ to the center surface of a shell element rema
perpendicular when the surface undergoes curvature, is
voked. The present calculations demonstrate that both
cellular surface area and volume change in response t
externally applied electric field, and roughly have a quadra
dependence. The angular distributions of the stress acros
cell membrane have been obtained. Based on this anal
the critical electric-field threshold for membrane rupture a
the elastic limit can be ascertained directly. Bending m
ments are shown to be small. Finally, deviations from
ellipsoidal shape are demonstrated, underscoring the in
rectness of an assumed simple ellipsoidal shape.

II. MODEL DETAILS

A. Stress and deformation

Our basic stress model is based on the classical s
deformation theory of thin, elastic shells@42#. Since the
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thickness of cell membranes is on the order of 5 nm, co
pared to their radii of;1 mm, the shell theory is quite ap
propriate. The forces and moments acting on a typical s
element are given in Fig. 1. Two meridians and two para
circles, each indefinitely close together, have been sho

FIG. 1. Schematic of a typical thin shell element and the as
ciated forces and moments.~a! The forcesNuf , Nu , Nf ; ~b! Qu ,
Qf , pr , pu , pf ; and ~c! the momentsM uf , Mf , andM u .
3-2
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Following the notation of Flugge@42#, f is the angle be-
tween a normal to the shell and its axis of revolution, wh
u is the meridional angle. Also,Nf denotes the meridiona
force per length,Nu the hoop force per length, andNfu the
shear. Furthermore in Fig. 1,pr , pf , andpu are the exter-
nally imposed stresses~which could include internal osmoti
pressure!, while r is the distance from the axis of rotation,r 1
the radius of curvature, andr 2 the distance of intersection o
the radius of curvature and the axis of revolution. In t
present context,pr , pf , andpu will be nonzero due to the
presence of the Maxwell stress tensor associated with
external field. It is assumed that the osmotic pressure co
butions topr , pf , and pu are negligible compared to th
Maxwell stress produced by the high electric fields. From
geometry,r 5r 2 sin(f), while the elemental distance ‘‘ds
along the meridian is given by: ds5r 1 df. Finally, Mf ,
M u , and Mfu are the bending moments~dimensions of
force!, while Qu andQf are the transverse forces per leng
that arise from bending theory. At equilibrium, the balance
all forces and moments yields the following six equations

d$rNf%/df1r 1d$Nuf%/du2r 1Nu cos~f!2rQf

52rr 1pf , ~1a!

d$rNfu%/df1r 1d$Nu%/du1r 1Nuf cos~f!2r 1Qu sin~f!

52rr 1pu , ~1b!

r 1Nu sin~f!1rNf1r 1dQu /du1d$rQf%/df5rr 1pr ,
~1c!

d$rM f%/df1r 1d$M uf%/du2r 1M u cos~f!5rr 1Qf ,
~1d!

d$rM fu%/df1r 1d$M u%/du1r 1M uf cos~f!5rr 1Qu ,
~1e!

Mfu /r 12M uf /r 25Nfu2Nuf . ~1f!

The current problem of interest, involves a determination
the equilibrium stresses and moments on cells subjecte
external electric, and the final deformed geometry un
steady-state conditions. Here, there is an inherent axial s
metry along the direction of the applied electric field, and
behavior along the two axes transverse to the app
electric-field direction, will be identical. Such axial symm
try will hold for spherical cells at all times, and ellipsoid
~and other! shapes in the steady state after the cells have
the time to reorient themselves in response to the exte
field @45#. A sketch of the applied field and the geometric c
model is shown in Fig. 2. There is an inner region, the c
membrane shell, and the outer region. Though a sphe
geometry is shown for simplicity, the shapes could be diff
ent, in general, with a symmetry perpendicular to the fi
direction. For such axisymmetric cases, the derivatives w
respect to the angleu drop out, while the shearing forcesNfu
and Nuf , the twisting momentsM uf and Mfu , and the
transverse shearQu all vanish. Also, the load componentpu
is zero. Consequently, the following simpler set of equatio
result:
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d$rNf%/df2r 1Nu cos~f!2rQf52rr 1pf , ~2a!

r 1Nu sin~f!1rNf1d$rQf%/df5rr 1pr , ~2b!

d$rM f%/df2r 1M u cos~f!5rr 1Qf . ~2c!

The above three equations contain five unknowns, and n
to be supplemented by the stress-strain relationships. In
elastic regime, the stresses can be related to the disp
mentsv ~transverse! andw ~normal! in the following manner
@42#:

Nf5~12K/t2!@$dv/df1w%/r 1

1n$v cos~f!1w sin~f!%/r #, ~3a!

Nu5~12K/t2!@$v cos~f!1w sin~f!%/r

1n$dv/df1w%/r 1#, ~3b!

Mf5~K/r 1!@d~$dw/df%/r 1!/df

1n$d@cos~f!$dw/df%/r #/df%#, ~3c!

M u5~K/r 1!@cos~f!$dw/df%/r #1n@d~$dw/df%/r 1!/df#,
~3d!

whereK is the flexural rigidity~i.e., bending stiffness!, n the
Poisson’s ratio,t the shell thickness assumed to be a co
stant, andw and v the displacements due to deformatio
along the radial and angular directions. Equations~3a!–~3d!
involve the displacementsw andv that constitute two addi-
tional unknowns of the problem. Thus, the combined set
equations@2~a!–2~c!# and @3~a!–3~d!# yield a system of
seven equations for the seven unknowns that can be so

In general, a numerical computation is required for o
taining a solution to the above problem. However, analyti
expressions can be obtained under certain simplifying co
tions. For example, consider the case:Mf;M u;Qf;0
which corresponds to neglecting the bending forces and
ments as has been proposed in the past@30–32#. Assuming
that the external stresses arise solely from the Maxwell st
tensor associated with the applied external field~i.e., ignor-
ing internal cell pressure and polarization effects!, the
stressespf and pr for the axisymmetric cases take the fo
lowing form:

pr50.5«0@kr12kr2#E2 cos~2f![F cos~2f!, ~4a!

FIG. 2. Simple cellular geometry, showing axial symmetry, f
field calculations.
3-3
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and

pf520.5«0@kr12kr2#E2 sin~2f![2F sin~2f!,
~4b!

where E is the externally applied electric field,kr1
and kr2 the dielectric constants of the membrane a
external medium, «0 the permittivity of free space
(58.85310212 F/m), andF[0.5«0 @kr12kr2# E2. Using
Eq. ~4! in the equation set~2!–~3! yields the following sim-
plifying solutions:

Nf~f!5@F/$r 2 sin2~f!%#

3H 0Ef

r 1r 2@cos~2f* !cos~f* !sin~f* !

1sin~2f* !sin2~f* !#df* J , ~5a!

Nu~f!5r 2F cos~2f!2@r 2 /r 1#Nf , ~5b!

v~f!5 0Ef

@q~f* !/sin~f* !#df* , ~5c!

where

q~f![$t2/@12K~12n2!#%$r 1@Nf~f!2nNu~f!#

2r 2@Nu~f!2nNf~f!#%, ~5d!

and

w~f!5r 2$t
2/@12K~12n2!#%@Nu~f!2nNf~f!#

2v~f!cot~f!. ~5e!

For an initial spherical shape,r 15r 25the radius ‘‘a,’’ and
the above simplifies to

Nf~f!50.5aF; Nu~f!5aF@0.522 sin2~f!#, ~6a!

v~f!52$Fa2t2@12K~12v !#%sin~2f!, ~6b!

and

w~f!5$Fa2t2@12K~12v2!#%@0.522 sin2~f!

2v/212~11v !cos2~f!#. ~6c!

For an ellipsoidal shape with ‘‘a’’ being the semimajor axis
along the field direction, and ‘‘b’’ the semiminor axes in the
two transverse directions~as has often been used in the l
erature!, r 1 and r 2 take on the following expressions:

r 15~a2/b!@$11tan2~f!%/$a2/b21tan2~f!%#1.5, ~7a!

and

r 25$b/cos~f!%@a2/b21tan2~f!#20.5. ~7b!

Using Eqs.~7a! and~7b! into the equation set~5a!–~5e! then
yields the complete solution for the ellipsoidal geometry.
02191
d

B. Electric field analysis

In the above formulas, polarization effects were not co
sidered and so the field was taken to equal the external e
tric field E given in terms of the factorF of Eq. ~4a!. How-
ever, given the presence of the cell and its membrane wh
are both polarizable materials, one needs to solve the Lap
equation to self-consistently determine the electric-fi
value and its spatial characteristics for assessing the Max
stress tensor. We first show this for a simple spherical-
geometry as given in the schematic of Fig. 2. Both t
spherical and ellipsoidal geometries lend themselves to a
lytical solutions, and hence, are chosen here as typical
amples. Other simple geometries can also be analyzed
merically. The inner region has radius ‘‘a’’ and permittivity
« in . The applied electric-fieldF0 was taken to be along thez
axis. The cellular membrane of Fig. 2 has a thicknessb
2a’ ’ 5 ‘ ‘ t ’ ’ and permittivity «mem, while the outer suspen
sion region a permittivity of«out. Due to azimuthal symme
try, the potentials in the three regions, which must satisfy
Laplace equation, can be expressed in terms of Legen
polynomials as

U in~r !5A0P01A1rP11A2r 2P21¯5S j 50,̀ Ajr
j Pj ,

~8a!

Umem~r !5S j 50,̀ @Bjr
j Pj1Cj Pj /r j 11#, ~8b!

and

Uout~r !52F0rP11S j 50,̀ D j Pj /r j 11, ~8c!

whereU in(r ), Umem(r ), andUout(r ) are the potentials at the
inside, membrane, and outer regions,Pj is the j th order Leg-
endre polynomial, andF0 the externally applied electric
field. Also, Aj , Bj , Cj , and D j are the coefficients of the
Legendre series expansions that can be determined by a
ing matching boundary conditions at the interfaces of
three regions. Invoking continuity in the potential and d
placement vector, then leads to the following boundary c
ditions:

U in~r 5a!5Umem~r 5a!, ~9a!

Umem~r 5b!5Uout~r 5b!, ~9b!

« in@]U in~r !/]r #ur 5a5«mem@]Umem~r !/]r #ur 5a , ~9c!

and

«mem@]Umem~r !/]r #ur 5b5«out@]Uout~r !/]r #ur 5b . ~9d!

The neglect of conductivity terms in Eq.~9! above merits
clarification. The Maxwell tensor cell deformation calcul
tions discussed here are important to simulate conditi
prior to membrane rupture and material outflows. Deform
tion and the buildup of internal stresses have to be taken
account to mimic the initial phase for electroporative ana
sis. Under these conditions, the conductivity of the cellu
system is small. Hence, the membrance conductivity is
3-4
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most negligible and can be omitted. Straightforward, but
dious manipulation of Eq.~9! yields the following expres-
sions for the potentials:

U in~r !5C1~r /a3!cos~f!@11$2«mem1« i%/$«mem2« in%#,
~10a!

Umem~r !5C1 cos~f!@1/r 21~r /a3!

3$2«mem1« i%/$«mem2« in%#, ~10b!

Uout~r !52F0 cos~f!@r 2b3/r 2#1$C1 /r 2%cos~f!

3@11~b/a!3$2«mem1« in%/$«mem2« in%#,

~10c!

where

C1523F0«out/@$T«mem/a3%22«mem/b3#1$2«out/b
3%

3@11~b/a!3T#, ~10d!

and

T5$2«mem1« in%/$«mem2« in%. ~10e!

Consequently, the electric fieldsFr(r ) and Ff(r ) just out-
side the membrane~i.e., atr 5b1! are given as

Fr~r 5b!5@3F012~C1 /b3!$11~b/a!3%#cos~f!

[Fr cos~f!, ~10f!

Ff~r 5b!5@C1 /b3#sin~f!@11~b/a!3T#[Ff sin~f!.
~10g!

For « in5«mem5«out, the above equations reduce to:U(r )
52F0r cosf), Fr(r )5F0 cos(f), andFf(r )52F0 sin(f).

While bothFr(r 5b) andFf(r 5b) retain the cos(f) and
sin(f) angular dependence, respectively, their magnitu
~i.e., Fr and Ff! are altered by the presence of dielect
materials. The resultant fielduFu is no longer thez axis ~i.e.,
not at an anglef with respect to the normal!. Instead,uFu
5@Fr

2 cos2(f)1Ff
2 sin2(f)#0.5, while the anglea between the

resultant field uFu and the normal becomes:a5tan21

@2tan(f)Ff /Fr #. Consequently, the expressions in Eqs.~4!
get modified to the form:pr50.5«0@kr12kr2#uFu2 cos(2a)
[F* cos(2a), and pf520.5«0@kr12kr2#uFu2 sin(2a)[
2F* sin(2a). Under these conditions, Eqs.~5a!–~5b! corre-
spondingly change to

Nf~f!5@F* /$r 2 sin2~f!%#

3H 0Ef

r 1r 2@cos~2a* !cos~f* !sin~f* !

1sin~2a!sin2~f* !#df* J , ~11a!

Nu~f!5r 2F* cos~2a!2@r 2 /r 1#Nf ,

where a* 5tan21@2tan~f* !Ff /Fr #. ~11b!
02191
-

s

For an ellipsoidal geometry~a shape known to approxi
mate many cells under deformation!, the Laplace equation is
most easily solved by resorting to ellipsoidal coordinates.
assume a prolate spheroid without loss in generality, w
semimajor axis ‘‘a,’’ semiminor axes ‘‘b,’’ and center at the
origin. The foci are taken to be along thez direction~parallel
to the appliedE field! at (0, 0,6L) with L5@a22b2#0.5.
The eccentricity ‘‘e’’ then is given by:e5L/a. The coordi-
nates§, h, f for this system are defined in the usual mann
@46# with respect to the Cartesian coordinates as

z5L§h, y5L@$§221%$12h2%#0.5sin~u!,

x5L@$§221%$12h2%#0.5cos~u!, ~12a!

i.e.,

§5@$x21y21~z1L !2%0.5

1$x21y21~z2L !2%0.5#/~2L !u5tan21~y/x!,

and

h5@$x21y21~z1L !2%0.5

2$x21y21~z2L !2%0.5#/~2L !. ~12b!

The ellipsoidal surface then corresponds to a constant§ value
given by:§[§o5a/L. Due to angular symmetry, the poten
tials in the three regions can be written as

Uout~§,h!52F0L§h1A§Q~§!,

Umem~§,h!52BF0L§h1C§Q~§!, ~13a!

U in~§,h!5DF0L§h,

with Q~§!50.5zLnu~11§!/~12§!u21,

~13b!

whereA, B, andC are constants to be determined from t
boundary conditions. Using the continuity of the potent
and displacement vector across the inner and outer m
brane~assumed to have constant thickness, ‘‘t’’ !, results in
the following solution:

Uout~§,h!52F0L§h1A§Q~§!, ~14a!

Umem~§,h!5Ah@§Q~§o!/§o1~S1 /S2!

3$Q~§o!/§o2$dQ~§o!/d§%~«out/«mem!%#

1F0Lh@~S1 /S2!~«out/«mem21!2§#,

~14b!

with

S15Q~§!2§Q~§o!/§o , S25Q~§o!/§o2dQ~§o!/d§,
~14c!

U in~§,h!5Ah§@Q~§o!/§o1~S3 /S2!$Q~§o!/§o

2$dQ~§o!/d§%~«out/«mem!%#1F0L§h

3@~S3 /S2!~«out/«mem21!21#, ~14d!

with
3-5
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S35Q~§1!/§12Q~§o!/§o , §1>§o@12tb/$a~a1b!%#. ~14e!

In the above,§5§1 represents the surface of the inner membrane, while the constant ‘‘A’’ is as

A5
F0L@S2~« in2«mem!1S4~«out2«mem!2« inS3~«out/«mem21!#

S2~« in2«mem!Q~§o!/§o1~« inS32«memS4!$Q~§o!/§o2~«out/«mem!dQ~§o!/d§%
, ~14f!
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S45dQ~§1!/d§2Q~§o!/§o . ~14g!

The electric field normal to the outer ellipsoidal surface
F§(§, h), while Fh(§, h) is orthogonal toF§ and lies in
planes containing thez axis. Expressions for these field
from Eqs.~13! are

F§~§o ,h!5@~§0
221!/~§o

22h2!#0.5$F0h2~A/L !

3@~Q~§o!1§odQ~§o!/d§!#%, ~15a!

Fh~§o ,h!5@~12h2!/~§0
22h2!#0.5@F0§o2AQ~§o!/L#.

~15b!

For a spherical geometry,a→b, and soL→0, §o→` yield-
ing F§5F0 cos(f), andFh52F0 sin(f).

III. RESULTS AND DISCUSSION

Numerical calculations based on the equations of the
vious section were performed to determined the effect
external electric fields on cellular shape changes. A list
parameters used in the computations are given in Table I.
accuracy the full stress theory@i.e., Eqs.~2! and ~3!# was
used without neglecting the bending forces and moment
fourth-order Runge-Kutta method was used to numeric
solve the resulting coupled differential equations. For s
consistency, the electric fields at the surface for each g
metrical shape had to be computed. This, in theory, can
accomplished by applying boundary conditions@Eq. ~9!#, and
solving for all the Legendre-polynomial coefficients. How
ever, such a procedure presents two practical difficult
First, for successful numerical solution, a finite set of diffe
ence equations is needed. This implies having to invoke
ditional ~perhaps arbitrary! conditions on the infinite Leg-
endre series for closure. Second, evaluation of the nor
derivatives@as in Eqs. 9~c!–~9d!, for example# and radius of
curvature@e.g.,r 1 in Eqs.~2! and~3!# is ‘‘noisy’’ and leads to
inaccuracies in numerical implementations. In order to

TABLE I. Parameters used for the simulations.

Parameter Source Value

kr1 ~F m21! Ref. @18# 8038.85310212

kr2 ~F m21! Ref. @18# 238.85310212

a ~m! Ref. @15# 131026

t ~m! Ref. @15# (325)31029

K ~J! Ref. @54# 5310220
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cumvent the above difficulties, a slightly different approa
was used here for the self-consistent analysis. A coupled
erative procedure was followed. First, Eqs.~2! and ~3! were
solved for the applied electric-field value~i.e., without self-
consistent polarization corrections! to yield the deformed cell
shape. Next, this shape was parametrized into an ‘‘ellips
dal’’ form by a curve-fitting procedure that yielded the be
fit values of the semimajor and semiminor axes,a and b,
respectively. The equations for the electric-field distributi
for the ellipsoidal geometry@as given in Eqs.~14! and~15!#,
were then applied. This updated electric-field distributi
was used once again to yield a more realistic shape base
Eqs.~2! and ~3!, and the process iterated until convergen
Obviously, since the deformed cell shape can, in princip
deviate appreciable from an ellipsoidal geometry at h
electric fields~E! or large membrane thickness~t! values, the
simulations were carried out for relatively smallE and t
magnitudes.

Results for an initial spherical cell of thickness 2 nm ha
ing a 1 mm radius~typical of E. coli cells, for example! in
response to various electric-field values are given in Fig
Field magnitudes ranging from 0–70 kV/cm were used. T
Poisson’s ration was taken to be 0.2. The steady-state d
formed cell shapes for positivez and y variables in thex
50 plane, are shown in Fig. 3. Due to the inherent symme
of the problem, only the first quadrant is specified for si
plicity. The shape changes from a perfect circle forE
50 V/cm, to ellipsoidal with increasing eccentricity a
higher fields. The corresponding forces per lengthNf(f)
andNu(f) are shown in Fig. 4 for fields of 20, 50, and 7

FIG. 3. Calculated equilibrium cell shapes along they-zplane in
response to applied electric fields of 0, 20, 50, and 70 kV/cm.
larization effects were ignored.
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kV/cm. The magnitudes range from 0 to about 25 mN/
The values ofNf are positive, independent of the angle, a
increase with field. This implies thatNf produces a constan
tension across the membrane. Plots ofNu(f) show positive
magnitudes for angles below 30°, and become progressi
negative reaching a maximum along the equatorial pla
The signs are simply the result of the chosenf direction as
depicted in Fig. 1. At low angles~i.e., close to the semi
major axis!, positiveNu(f) denotes a state of tension wit
component roughly transverse to thez axis. The negative
values nearf;90°, for example, signifies a transverse~i.e.,
x-z plane! compression in response to the tension in they-z
plane. As reported in the literature@47#, the typical tension
for membrane rupture is in the range 1–10 mN/m. Our
sults are thus in very good agreement, and show that
applied electric fields of 50 kV/cm and higher, one can e
pect membrane rupture simply based on electromechan
considerations. The exact value will obviously depend on
rigidity parameterK and the Poisson’s ration, but the mag-
nitudes as predicted by this simply analysis should roug
remain valid.

The deformed cell shape strongly depends on the
characteristics. Changes in the rigidity parameter or
membrane thickness alter the force distributions, and he
affect the overall shape. Calculated results of the deform
geometry for a 1mm radius starting from an unstresse
spherical cell are given in Fig. 5. The membrane thickn
ranged from 2–5 nm and various electric fields were us
The curves of Fig. 5 show very clearly that besides app
electric fields, the deformation is controlled by the me
brane thickness, and increases with ‘‘t.’’ As the thickness
changes from 2 to 5 nm, the geometry is modified fro
spherical to ellipsoidal and then begins to assume a ‘‘pean
shape~or discocyte transformation@38#!. Based on the trend
evident in Fig. 5, one could qualitatively predict an event
shift towards a ‘‘dumbbell’’ geometry at higher fields, o
thicker membranes, or under conditions of a smaller rigid
parameter, or with a larger Poisson’s ratio. Such calculati
for strongly deformed shapes, however, have not been sh
here since the perturbative theory used in this analysis c
be called into question for large deformations. In any cas

FIG. 4. Corresponding forces per lengthNf(f) andNu(f) for
applied fields of 0, 20, 50, and 70 kV/cm.
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becomes evident that deviations from a simple geometry
indeed possible, and that the ellipsoidal form often used
previous work may not be the most accurate representa
It may also be mentioned that in actual practice, a sli
change in the membrane thickness is likely during cellu
deformation process. For example, a net expansion of
surface area would give rise to a marginal decrease in
membrane thickness ‘‘t.’’ Based on the results of Fig. 5, suc
a ‘‘second-order’’ effect on ‘‘t’’ would work to slightly di-
minish the overall deformation.

Deviations in the electric-field distribution due to th
presence of the dielectric media, are discussed next. The
profile for the componentsEy andEz are shown in Fig. 6 for
a 1 mm radius spherical cell subjected to an external
kV/cm field was used, with relative permittivities of 81 an
2, respectively, for the membrane and surrounding me
Due to induced charges on the dielectric spherical me
brane, the electric-field linesEz deviate from their parallel
orientation and tend to cluster at the cell. Consequently,

FIG. 5. Deformed cell shape results for various membra
thicknesses and applied fields of 20 kV/cm and 50 kV/cm.

FIG. 6. Electric-field profiles just outside a 1mm radius spheri-
cal cell in response to an external 20 kV/cm field. The relat
permittivities for the membrane and surrounding media were se
81 and 2, respectively.
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radial field increases with the largest change from the
kV/cm value at the pole which corresponds tof50. As ex-
pected, the radial component falls to zero at the equato
plane which corresponds tof590°. Due to the field distor-
tion, the resultant field is no longer solely along thez direc-
tion, but instead has a smallEy component~largest atf
545°! and a deviation about the 20 kV/cm level inEz .
More significantly, the transverse component with polari
tion is smaller~i.e., less negative! which will lead to a de-
crease in the equatorial ‘‘flattening.’’

Finally, self-consistent numerical simulations were carr
out to evaluate the field-dependent changes in the cell
ume and surface area. The rationale for this calculation
the following: From an experimental standpoint, obser
tions of absorbance dichroism and changes in optical sca
ing can be made, and these effects are associated with
ability in cell surface area. It is, therefore possible
quantitatively observe and monitor areal changes and ga
the dependence on applied electric field through optical m
surements. Analysis of such field-dependent variations
thus a meaningful first step towards comparisons with
periments, and for data interpretation.

Figure 7 shows the bending momentMf(f) and associ-
ated transverse forceQf(f) for an applied field of 20 kV/cm
for an initial 5 nm sphere. As seen from the curve, the m
nitude of Mf(f) is negligibly small and has a nearly con
stant value of about 3310212 Newtons. The curve for
M u(f) was nearly identical to that ofMf(f), and so has
not been shown separately in the figure. ThisM u(f)
;Mf(f) condition obtained here is in keeping with a pr
vious result reported by Pamplona and Calladine@48#. The
angular dependence ofQf(f) from Fig. 7 is seen to be
symmetric aboutf545°, and also has a relatively sma
value. Thus, compared to bothNf(f) andNu(f), the vari-
ablesQf(f), M u(f), and Mf(f) can all be neglected a
has been done in the past. Finally, Fig. 8 shows the fractio
change in the cellular surface area and volume as a func
of the applied electric field. Two points are evident from t
results. First, both curves exhibit a rough quadratic behav

FIG. 7. The bending momentMf(f) and associated transvers
force Qf(f) for applied field of 20 kV/cm for an initial 5 nm
spheroid.
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This is in keeping with some recent optical scattering exp
mental data@28#. The exact magnitudes, however, are subj
to the inaccuracies and uncertainty of the material parame
such as the rigidityK and Poisson’s ration. Hence, the data
of Fig. 8 does not lend itself to a direct comparison w
experimental data. However, the general electric-fie
dependent trend predicted here has been shown to be a
rate. A second point about Fig. 8 is that the change in
volume is larger than the corresponding areal variation. T
is to be expected as the volume scales more rapidly than
surface area, at least for the simple ellipsoidal shapes
higher electric fields beyond the 25 kV/cm value shown
Fig. 8, it is conceivable that the areal variations beco
larger as the cell changes from an ellipsoidal to a ‘‘pean
discocyte geometry’’ as shown in Fig. 5 for the 50 kV/c
field.

IV. SUMMARY AND CONCLUSIONS

A self-consistent model analysis of cellular deformati
and shape change in response to an applied quasistatic
tric field has been carried out. Such calculations would h
direct applications to cellular electroporation, and provide
important step in the self-consistent evaluation of the elec
field at the cell membrane. Accuracy in the electric-field v
ues is important, since the field magnitude and distribut
controls the pore formation rate, the evolution of the po
distribution function in ‘‘r space’’ as governed by the Smolu
chowski equation, and ionic flow. As the fields are distort
by the polarizability of the biological medium and influence
by factors such as cellular size and geometric shape, an e
tromechanical analysis becomes necessary. Besides, ex
mental verification of such changes in cell shape could
probed through methods such as time domain dielectric s
troscopy @49# or microwave energy-loss measuremen
These techniques accurately sample dynamic properties
as the dielectric permittivity, conductance, and capacita
of cells in suspension. The parameters are all governed
the cell geometry and shape. For example, on the basis o
Maxwell-Garnet theory@50,51#, the collective dielectric be-

FIG. 8. Calculated variations in the cellular surface area a
volume with applied electric field for an initial 1mm cell radius and
5 nm membrane thickness.
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havior has been shown to depend on cell geometry@52#, and
could be extracted as a fitting parameter.

In this paper, the issue of calculating cell deformatio
self-consistently due to the electromechanical forces
presented. Instead of an energy-based virtual work form
ism, a first-principles approach based on thin-shell the
was used. The difficulty with the virtual work method is th
it does not lend itself to nonequilibrium analyses, or the
clusion of dissipative forces. An approach based on force
moment calculations has the advantage that it can potent
be extended to include dynamical analysis and tempora
sponse. In this formulation, both the shear and bend
moduli were carefully included, and the Love-Kirchhoff h
pothesis used. Unlike most previous reports, assumpt
such as constant surface area or cell volume have not
used. The present calculations demonstrated the follow
features:~i! At low values of the applied electric fields~as
was commonly the case in the past!, the deformed cells can
roughly be approximated by an ellipsoidal shape.~ii ! How-
ever, for much larger field magnitudes, as have recently b
used@12–15#, the deformations would be fairly significan
and the cell geometry would no longer be described ac
rately by ellipsoidal shapes. For example, at fields on
order of 50 kV/cm, a ‘‘peanut-shaped’’ geometry was sho
to result. The possibility of such discocytes had been p
dicted by Deuling and Helfrich@38#. ~iii ! The results here
also demonstrated that the final shape depends on the m
brane thickness. In general, it was argued that with decr
ing thickness, deviations from the unstressed shape woul
less severe. This has direct implications for cells, tissues,
lipid bilayers in which significant molecular reorientatio
en
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and restructuring can occur upon the application of an e
tric field. ~iv! Values of the surface forces obtained in t
present calculations were in remarkably good agreem
with the 1–10 mN/m range for membrane rupture that h
been reported in the literature@47#. This lends validity and
credence to the present paper.~v! It was also shown that, a
least for the smaller electric fields, both the cellular surfa
area and volume would change roughly in a quadratic m
ner with electric field.~vi! Finally, it was shown that the
bending moments are generally quite small and can be
glected for a simpler analysis.

The present paper lends itself to time-dependent anal
upon the inclusion of appropriate acceleration terms~linear
and angular! in the force and moment balance equation
Thus, for example, situations such as cellular reorienta
parallel to an applied field could be analyzed. This techniq
would also be applied to cells that had a nonspherical sh
under unperturbed conditions~e.g., blood cells!. Also,
changes in the osmotic pressure could be included by in
porating a dynamical aspect to thepr , pf , andpu variables.
Obviously, for high-frequency temporal variations or ac e
citations, the inclusion of Maxwell equations and Maxwe
Wagner polarization@53# would be needed. Such analys
will be presented elsewhere.
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